Limma Analysis Output:

Links to PDF copies of plots are in 'Plots' section below
Densityplots.png Boxplots.png MDSPlot_CellTypeStatus.png MDSPlot_extra.png VoomPlot SAPlot.png MDVolPlot_RTMetastatic-RMControl

Differential Expression Counts:

Up Flat Down
RTMetastatic-RMControl 400 6944 3694

Plots:

CpmPlots.pdf
DensityPlots.pdf
BoxPlots.pdf
MDSPlot_CellTypeStatus.pdf
MDSPlot_extra.pdf
MDPlots_Samples.pdf
VoomPlot.pdf
SAPlot.pdf
MDPlot_RTMetastatic-RMControl.pdf
VolcanoPlot_RTMetastatic-RMControl.pdf
Heatmap_RTMetastatic-RMControl.pdf
Stripcharts_RTMetastatic-RMControl.pdf

Tables:

limma-voom_filtcounts.tsv
limma-voom_normcounts.tsv
limma-voom_RTMetastatic-RMControl.tsv

R Data Object:

limma-voom_analysis.RData

Glimma Interactive Results:

Glimma_MDSPlot.html
Glimma_MDPlot_RTMetastatic-RMControl.html
Glimma_VolcanoPlot_RTMetastatic-RMControl.html

Alt-click links to download file.

Click floppy disc icon associated history item to download all files.

.tsv files can be viewed in Excel or any spreadsheet program.

Additional Information

Summary of experimental data:

*CHECK THAT SAMPLES ARE ASSOCIATED WITH CORRECT GROUP(S)*

SampleID CellTypeStatus (Primary Factor)
Normal_3.gz RMControl
Normal_8.gz RMControl
Normal_5.gz RMControl
TNBC_29.gz RTMetastatic
TNBC_18.gz RTMetastatic
TNBC_14.gz RTMetastatic
Normal_11.gz RMControl
Normal_10.gz RMControl
Normal_9.gz RMControl
Normal_7.gz RMControl
Normal_6.gz RMControl
Normal_4.gz RMControl
Normal_2.gz RMControl
Normal_1.gz RMControl
TNBC_50.gz RTMetastatic
TNBC_45.gz RTMetastatic
TNBC_44.gz RTMetastatic
TNBC_43.gz RTMetastatic
TNBC_41.gz RTMetastatic
TNBC_40.gz RTMetastatic
TNBC_34.gz RTMetastatic
TNBC_20.gz RTMetastatic

Citations

Please cite the following paper for this tool:
Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, Blewitt ME, Asselin-Labat ML, Smyth GK, Ritchie ME (2015). Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Research, 43(15), e97.

limma

Please cite the paper below for the limma software itself. Please also try to cite the appropriate methodology articles that describe the statistical methods implemented in limma, depending on which limma functions you are using. The methodology articles are listed in Section 2.1 of the limma User's Guide. Cite no. 3 only if sample weights were used.
  1. Smyth GK (2005). Limma: linear models for microarray data. In: 'Bioinformatics and Computational Biology Solutions using R and Bioconductor'. R. Gentleman, V. Carey, S. doit,. Irizarry, W. Huber (eds), Springer, New York, pages 397-420.
  2. Law CW, Chen Y, Shi W, and Smyth GK (2014). Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology 15, R29.
  3. Ritchie ME, Diyagama D, Neilson J, van Laar R, Dobrovic A, Holloway A and Smyth GK (2006). Empirical array quality weights for microarray data. BMC Bioinformatics 7, Article 261.

edgeR

Please cite the first paper for the software itself and the other papers for the various original statistical methods implemented in edgeR. See Section 1.2 in the edgeR User's Guide for more detail.
  1. Robinson MD, McCarthy DJ and Smyth GK (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140
  2. Robinson MD and Smyth GK (2007). Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23, 2881-2887
  3. Robinson MD and Smyth GK (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics, 9, 321-332
  4. McCarthy DJ, Chen Y and Smyth GK (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297

Please report problems or suggestions to: su.s@wehi.edu.au

Session Info
Task started at: 2020-06-04 00:49:28
Task ended at: 2020-06-04 00:50:28
Task run time: 1 mins