QC dati sequenziamento NGS

9 Gennaio 2024

Paolo Uva

Bioinformatica Clinica IRCCS Istituto Giannina Gaslini

Agenda

- Retrieve datasets for training from History
- Quality control:
 - FASTQ
 - BAM/CRAM, coverage (and recap with UCSC)
 - VCF

How to retrieve datasets

All datasets are available in a Shared history

https://usegalaxy.eu/u/puva/h/lezione-7---datasets

The shared history includes 8 files, organized in 3 datasets using Galaxy **tags**.

How to retrieve datasets

All datasets are available in a Shared history

https://usegalaxy.eu/u/puva/h/lezione-7---datasets

The shared history includes 8 files, organized in 3 datasets using Galaxy **tags**.

Tags can help you to better organize your history and track datasets.

- 1. Click on the dataset to expand it
- 2. Click on Add Tags 🐿
- 3. Add a tag starting with #
 - Tags starting with # will be automatically propagated to the outputs of tools using this dataset.
- 4. Press Enter
- Check that the tag appears below the dataset name

Lezione 7 - Datasets

■ 8.08 GB

51: LowQuality_Reads.fastq.gz

#dataset1

50: HighQuality_Reads.fastq.gz

#dataset1

47: Trio_1_Variants.vcf.gz

#dataset3

44: father.dedup.bam

#dataset3

43: mother.dedup.bam

#dataset3

42: proband.dedup.bam

#dataset3

23: Panel_target_regions.bed

#dataset2

22: Panel_alignment.bam

#dataset2

Dataset 1 - FASTQ

Two FASTQ files with:

- high quality reads
- low quality reads

Lezione 7 - Datasets

■ 8.08 GB 51: LowQuality_Reads.fastq.qz #dataset1 50: HighQuality_Reads.fastq.qz #dataset1 47: Trio_1_Variants.vcf.gz #dataset3 44: father.dedup.bam #dataset3 43: mother.dedup.bam #dataset3 42: proband.dedup.bam #dataset3 23: Panel target regions.bed #dataset2 22: Panel_alignment.bam #dataset2

Dataset 2 - Gene panel

BAM file with reads aligned to the following genes:

ATRX

CDKL5

CNTNAP2

FOXG1

MECP2

MEF2C

NRXN1

SLC9A6

TCF4

UBE3A

ZEB2

Lezione 7 - Datasets

■ 8.08 GB 51: LowQuality_Reads.fastq.qz #dataset1 50: HighQuality_Reads.fastq.qz #dataset1 47: Trio_1_Variants.vcf.gz #dataset3 44: father.dedup.bam #dataset3 43: mother.dedup.bam #dataset3 42: proband.dedup.bam #dataset3 23: Panel_target_regions.bed #dataset2 22: Panel alignment.bam

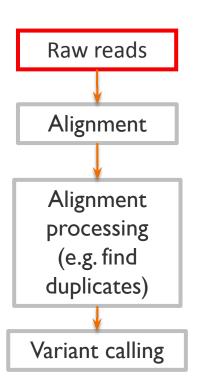
#dataset2

Dataset 3 - Exome (chr8 only)

Trios (mother, father, proband) with:

- BAM file for each individual
- VCF multisample

For this tutorial, BAMs and VCFs only include sequenand variants from a *region of chr8*


Lezione 7 - Datasets

Standard NGS DNA analysis pipeline

Raw reads Alignment Alignment processing (e.g. find duplicates) Variant calling Format Software

FASTQ quality control

FASTQ Software FastQC

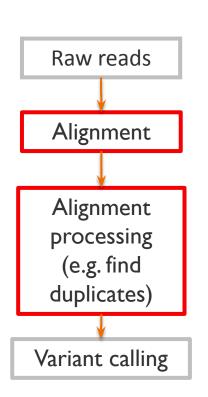
Tool FastQC

Input FASTQ file (NGS reads)

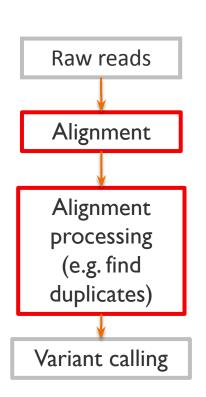
Output HTML Report

Exercise 1 - FastQC

- Run FastQC on #dataset 1
 - Tip: Select Multiple datasets option and select both FASTQ files


Combine both FastQC RawData output into one report using MultiQC


General Statistics


BAM/CRAM quality control

BAM/CRAM files store alignment information of each sequence in a compressed format

BAM/CRAM quality control

FASTQ Software FastQC

BAM/CRAM General stats: **bam.iobio.io**Target Coverage: **mosdepth**

Tool bam.iobio.io
Input BAM
Output Interactive plot

Tool mosdepth
Input BAM, BED with target regions, thresholds
Output Tabular files

bam.iobio.io

44: father.dedup.bam

43: mother.dedup.bam

42: proband.dedup.bam

Add Tags

402.3 MB

format bam, database hg19

uploaded bam file

D D LLL ...

Binary bam alignments file

In Galaxy, click on
Visualize
than
display at bam.iobio

Select exonic regions (GrcH37)

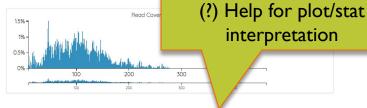
Click to increase the number of sampled reads

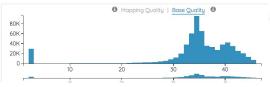
Outliers

PRACTICI

#dataset 3

Proper Pairs 6


6306



mosdepth compute coverage of target regions

Tool **mosdepth**

Input BAM, BED with target regions, thresholds

Output **Tabular files**

This tool can be used to identify exons with low coverage

Example of output file:

#chrom	start	end	region	20X	30X
chr18	52895455	52895592	NM_001083962.2_cds_18_0_chr18_52895456_r	137	137
chr18	52896077	52896307	NM_001083962.2_cds_17_0_chr18_52896078_r	230	230

Number of bases covered = or > threshold

If we compute the fraction, e.g. c5/(c3-c2):

52895455	52895592	NM_001083962.2_cds_18_0_chr18_52895456_r	137	137	1.0	1.0
52896077	52896307	NM_001083962.2_cds_17_0_chr18_52896078_r	230	230	1.0	1.0

Fraction of region = or > threshold

mosdepth compute coverage of target regions

- Input BAM/CRAM: Panel_alignment.bam
- Compute depth by region: Compute depth in regions specified by a BED file
- BED file specifying regions: BED file with exons of your gene [*]
- Advanced options:
 - Specify thresholds for output when using region output: 20,30

The number of bases in each region covered = or > the thresholds is in **mosdepth thresholds BED** output file. To convert the absolute number of bases into fractions:

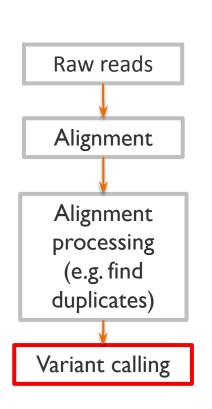
- run **Compute on rows** using the expressions
 - c5/(c3-c2)
 - c6/(c3-c2)

How to retrieve exon regions in Galaxy

- Get data -> UCSC Main Table Browser
 - assembly: the same used for Panel_alignment.bam
 - group: Genes and Gene Predictions
 - track: NCBI RefSeq
 - table: RefSeq Select and MANE
 - o region: **genome**
 - identifiers: enter a gene of the panel [*]
 - o output format: **BED**
 - Send output to: Galaxy
 - Create one BED record per: Coding Exons

mosdepth compute coverage of target regions

- Input BAM/CRAM: Panel_alignment.bam
- Compute depth by region: Compute depth in regions specified by a BED file
- BED file specifying regions: BED file with exons of your gene
- Advanced options:
 - Specify thresholds for output when using region output: 20,30


The number of bases in each region covered = or > the thresholds is in **mosdepth** thresholds BED output file. To convert the absolute number of bases into fractions:

- run **Compute on rows** using the expressions
 - c5/(c3-c2)
 - c6/(c3-c2)

Question: do you have poorly covered exons in your gene? Are we at risk of missing Patho/Likely Patho variants (e.g. in NRXN1) according to ClinVar?

VCF quality control

BAM/CRAM General stats: **bam.iobio.io**Target Coverage: **mosdepth**

VCF General stats: vcf.iobio.io

Too vcf.iobio.io
Input VCF
Output Interactive plot

vcf.iobio.io

Click to increase the number of sampled reads

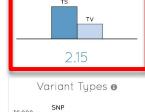
In Galaxy, run

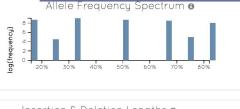
vcf.iobio.io

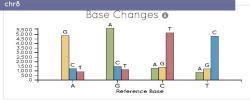
GRCh37 All References

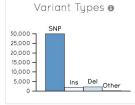
Filter samples father mother proband

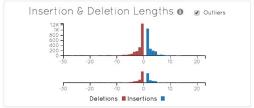
34 thousand 10 variants sampled


imp.mayo training.cineca.it/display_application/2fd1d72d379aa820/lobi o_vcf/vcf_iobio/0aa34fac8daa4bd8/data/galaxy_2fd1d72d37 9aa820.vcf.qz




Ts/Tv Ratio 🛭




Ts/Tv ratio

Commonly used thresholds

FASTQ

Most bases above Q30 (FastQC)

BAM

- % un-mapped reads < 2% (bam.iobio.io)
- % duplicated reads ~15% (bam.iobio.io)

VCF

Ts/Tv ratio > 2 (vcf.iobio.io)

Check if our samples pass these thresholds

Summary

- In-depth quality control of raw sequencing reads (issues with DNA quality, library construction, pooling): FastQC
- Un-mapped reads (contamination), duplication (library construction), target coverage (test accuracy): bam.iobio, mosdepth
- Quality of variant calls (false positives): vcf.iobio

Prossimo argomento

16/01/2024

UCSC: Visualizzazione dati, utilizzo di custom track, database, table browser

Marta Rusmini